2,471 research outputs found

    Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    Get PDF
    To date, an experimental dip-coating facility was constructed. Using this facility, relatively thin (1 mm) mullite and alumina substrates were successfully dip-coated with 2.5 - 3.0 ohm-cm, p-type silicon with areas of approximately 20 sq cm. The thickness and grain size of these coatings are influenced by the temperature of the melt and the rate at which the substrate is pulled from the melt. One mullite substrate had dendrite-like crystallites of the order of 1 mm wide and 1 to 2 cm long. Their axes were aligned along the direction of pulling. A large variety of substrate materials were purchased or developed enabling the program to commence a substrate definition evaluation. Due to the insulating nature of the substrate, the bottom layer of the p-n junction may have to be made via the top surface. The feasibility of accomplishing this was demonstrated using single crystal wafers

    Localizability of Wireless Sensor Networks: Beyond Wheel Extension

    Full text link
    A network is called localizable if the positions of all the nodes of the network can be computed uniquely. If a network is localizable and embedded in plane with generic configuration, the positions of the nodes may be computed uniquely in finite time. Therefore, identifying localizable networks is an important function. If the complete information about the network is available at a single place, localizability can be tested in polynomial time. In a distributed environment, networks with trilateration orderings (popular in real applications) and wheel extensions (a specific class of localizable networks) embedded in plane can be identified by existing techniques. We propose a distributed technique which efficiently identifies a larger class of localizable networks. This class covers both trilateration and wheel extensions. In reality, exact distance is almost impossible or costly. The proposed algorithm based only on connectivity information. It requires no distance information

    Scanning a photonic crystal slab nanocavity by condensation of xenon

    Get PDF
    Allowing xenon or nitrogen gas to condense onto a photonic crystal slab nanocavity maintained at 10–20 K results in shifts of the nanocavity mode wavelength by as much as 5 nm (~=4 meV). This occurs in spite of the fact that the mode defect is achieved by omitting three holes to form the spacer. This technique should be useful in changing the detuning between a single quantum dot transition and the nanocavity mode for cavity quantum electrodynamics experiments, such as mapping out a strong coupling anticrossing curve. Compared with temperature scanning, it has a much larger scan range and avoids phonon broadening

    Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    Get PDF
    The technical and economic feasibility of producing solar cell quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large grain polycrystalline silicon was investigated. The dip-coating methods studied were directed toward a minimum cost process with the ultimate objective of producing solar cells with a conversion efficiency of 10% or greater. The technique shows excellent promise for low cost, labor-saving, scale-up potentialities and would provide an end product of sheet silicon with a rigid and strong supportive backing. An experimental dip-coating facility was designed and constructed, several substrates were successfully dip-coated with areas as large as 25 sq cm and thicknesses of 12 micron to 250 micron. There appears to be no serious limitation on the area of a substrate that could be coated. Of the various substrate materials dip-coated, mullite appears to best satisfy the requirement of the program. An inexpensive process was developed for producing mullite in the desired geometry

    All-Optical Switching Demonstration using Two-Photon Absorption and the Classical Zeno Effect

    Full text link
    Low-contrast all-optical Zeno switching has been demonstrated in a silicon nitride microdisk resonator coupled to a hot atomic vapor. The device is based on the suppression of the field build-up within a microcavity due to non-degenerate two-photon absorption. This experiment used one beam in a resonator and one in free-space due to limitations related to device physics. These results suggest that a similar scheme with both beams resonant in the cavity would correspond to input power levels near 20 nW.Comment: 4 pages, 5 figure

    Characterization of 1D photonic crystal nanobeam cavities using curved microfiber

    Get PDF
    We investigate high-Q, small mode volume photonic crystal nanobeam cavities using a curved, tapered optical microfiber loop. The strength of the coupling between the cavity and the microfiber loop is shown to depend on the contact position on the nanobeam, angle between the nanobeam and the microfiber, and polarization of the light in the fiber. The results are compared to a resonant scattering measurement
    corecore